Exercise 3.3.5

For the following functions, sketch the Fourier cosine series of $f(x)$ and determine its Fourier coefficients:
(a) $f(x)=x^{2}$
(b) $f(x)= \begin{cases}1 & x<L / 6 \\ 3 & L / 6<x<L / 2 \\ 0 & x>L / 2\end{cases}$
(c) $f(x)= \begin{cases}0 & x<L / 2 \\ x & x>L / 2\end{cases}$

Solution

Assume that $f(x)$ is a piecewise smooth function on the interval $0 \leq x \leq L$. The even extension of $f(x)$ to the whole line with period $2 L$ is given by the Fourier cosine series expansion,

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L},
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. The coefficients A_{n} are obtained by multiplying both sides by $\cos \frac{p \pi x}{L}$ (p being an integer), integrating both sides with respect to x from 0 to L, and taking advantage of the fact that cosine functions are orthogonal with one another.

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

A_{0} is obtained just by integrating both sides of the series expansion with respect to x from 0 to L.

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

Part (a)

For $f(x)=x^{2}$, the coefficients are

$$
A_{0}=\frac{1}{L} \int_{0}^{L} x^{2} d x=\frac{L^{2}}{3}
$$

and

$$
A_{n}=\frac{2}{L} \int_{0}^{L} x^{2} \cos \frac{n \pi x}{L} d x=\frac{4(-1)^{n} L^{2}}{n^{2} \pi^{2}}
$$

Below is a graph of the function and its even extension to the whole line.

Part (b)

For $f(x)=1$ if $x<L / 6$ and $f(x)=3$ if $L / 6<x<L / 2$ and $f(x)=0$ if $x>L / 2$, the coefficients are

$$
A_{0}=\frac{1}{L}\left(\int_{0}^{L / 6} d x+\int_{L / 6}^{L / 2} 3 d x+\int_{L / 2}^{L} 0 d x\right)=\frac{7}{6}
$$

and

$$
A_{n}=\frac{2}{L}\left(\int_{0}^{L / 6} \cos \frac{n \pi x}{L} d x+\int_{L / 6}^{L / 2} 3 \cos \frac{n \pi x}{L} d x+\int_{L / 2}^{L} 0 \cos \frac{n \pi x}{L} d x\right)=\frac{2}{n \pi}\left(3 \sin \frac{n \pi}{2}-2 \sin \frac{n \pi}{6}\right) .
$$

Below is a graph of the function and its even extension to the whole line.

Part (c)

For $f(x)=0$ if $x<L / 2$ and $f(x)=x$ if $x>L / 2$, the coefficients are

$$
A_{0}=\frac{1}{L}\left(\int_{0}^{L / 2} 0 d x+\int_{L / 2}^{L} x d x\right)=\frac{3 L}{8}
$$

and

$$
A_{n}=\frac{2}{L}\left(\int_{0}^{L / 2} 0 \cos \frac{n \pi x}{L} d x+\int_{L / 2}^{L} x \cos \frac{n \pi x}{L} d x\right)=\frac{L}{n^{2} \pi^{2}}\left[2(-1)^{n}-2 \cos \frac{n \pi}{2}-n \pi \sin \frac{n \pi}{2}\right] .
$$

Below is a graph of the function and its even extension to the whole line.

